Prof. Mel Ulmer DEPT OF PHYSICS

&

ASTRONOMY

The Concept:

Intact Electroforming Multilayer Process

Sputtering Gun

Mandrel with electrodeposited nickel

Coated Mandrel

Advantages of IEMP:

- Coat Mandrel => Focal Length, small as 1-2 meters => SMEX is possible
- Electroforming offers the best angular resolution (< 10 arc sec) outside custom figuring
 - An additional advantage of proccess at NU =
 - CNx coating (10 nm) smooths & protects

Now the entire process:

Coat mandrel with CNx

Coat mandrel with release layer

Coat with multilayers

Coat with adhesion layers

Electroform

Remove electroform

Remove release layer

Therefore, Total Institutional Integration is

VERY IMPORTANT

About 90 deg rotation

Two different orientations about optical axis, same energy; W/Si 5.29 nm

Higher Energy

Follow Up & Evaluation:

Correction for Geometrical Effects at 10 keV:

Evaluated a 1 cm segment, derived 17 % reflectivity

At first Bragg peak

Optical trace of 1 cm segment verified geo. corr.

Si "witness sample" 16% reflectivity

More Optical Evaluation:

Mandrel pre- CNx coating

Roughness 1.1-3.2 nm

Mirror Segment Roughness 0.5-0.6 nm!

Agrees with fit to X-ray data

Conclusion: Excellent Multilayers because:

- Same Bragg angles at different energies, more penetrating versus less
- Narrow Bragg peaks
- One multilayer d-spacing = 5.29 nm fits all
- Same Bragg angles at different axis rotations
- All the data point towards 14-20% reflectivity

Overall conclusions

- We can put viable multilayers on the inside of mirrors!
- The entire process:
 - CNx plus IEMP are a success
 - For high quality optics
 - flexibility in design, IEMP is it.
- The only problem may be mass

Co-Authors: Bob I. Altkorn, Anita Madan, Mike Graham, and Yong S. Chu

Helpers, collaborators, etc.: Al Krieger, Dan Parsignault, Derrick Mancini, Matt Steele, Megan Krejny, Peter Takacs, Yip-Wah Chung, Jane Chang

NASA Support: SR&T and Con X

www.astro.nwu.edu/astro/faculty/ulmer

Where would we like to go from here?

Progress to new chamber with graded d-spacing

Coat our much better Zeiss Mandrel

Then replicate success on a Wolter I

Test MSFC

Then?? A SMEX path finder? A Midex Survey or ??

The

End